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Abstract

We consider a shape optimization problem for a cantilevered pipe conveying fluid. The outer diameter
distribution of the pipe and the location of the sensor and the actuator are optimized such that the critical
flow velocity of the closed-loop system is maximized. The outer diameter distribution is optimized such that
the total volume of the pipe is unchanged with the initial diameter distribution. The critical flow velocity of
the closed-loop system is defined as the flow velocity which cannot be stabilized by active control law with a
predetermined energy quantity. By this definition, it is physically reasonable comparing the quality of
several design candidates since all candidates are actively controlled with the same energy consumption. We
propose a method for obtaining the critical flow velocity with consideration of the amount of computation
for the optimal design. This optimal design problem results in a maximization problem with equality and
inequality constraints. We adopt simulated annealing method which is known as one of discrete
optimization techniques for obtaining the optimal design.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamic stability of cantilevered pipes conveying fluid has been studied by several
researchers [1–4]. Those pipe systems are found in many engineering fields, e.g., oil pipeline, heat
exchanger tubes, etc. and the higher critical flow velocity is generally desired. Results of above
studies are available as a guideline in designing the pipe system with higher critical flow velocity.
For finding the pipe system with higher critical flow velocity, two methodologies are mainly
proposed, i.e. structural optimization [5,6] and active control [7–10]. In the approach of the
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structural optimization, several structural design variables, e.g., the shape of the pipe and
locations and their coefficients of the supporting spring and the damper are optimized with the use
of the above structural properties [1–4]. On the other hand, the authors have investigated the
stabilization of the pipe system with active control technique [7–10]. In this approach, the pipe
system is firstly designed, i.e., structural design variables (including locations of the sensor and the
actuator for active control) are firstly determined, and the feedback controller is synthesized for
the fixed model of the pipe system. This two-step design scheme is generally employed in designing
the active vibration control system.
However, we have not obtained the solution to the following problem: How should we

determine structural design variables when an active control is applied? Note that it is not
necessarily true that the optimal design variables for maximizing the critical flow velocity without
active control are not ‘‘optimal’’ when an active control is applied because the critical flow
velocity of the active control system depends on not only structural design variables, but also the
controller for the active control. The flow velocity of the active control system becomes critical
when the stability of the closed-loop system with the pipe system and the controller is violated. In
the situation that both of structural design variables and the controller for active control can be
adjusted, it is more adequate and natural to design the structural and control design variables
simultaneously than the above two-step scheme.
We consider an optimal design problem for an actively controlled cantilevered pipes conveying

fluid for maximizing the critical flow velocity of the closed-loop system. The outer diameter
distribution of the pipe, the location of the sensor and the actuator and the feedback controller are
simultaneously adjusted with a numerical optimization technique. This design procedure is
referred to as ‘‘Simultaneous optimal design of structural and control systems’’ and studied
actively in this decade.
Borglund [11] studied a shape optimization problem of a beam between two actively controlled

pipes conveying water. The weight of the beam was minimized such that the critical flow velocity
of the closed-loop system is unchanged. However, the stability and the performance of the
closed-loop system are not guaranteed since the control law is a simple static output feedback.
Hiramoto and Doki [12] optimized the outer diameter distribution of the pipe and the location of
the sensor and the actuator for maximizing the critical flow velocity of the closed-loop system with
LQG control law. The LQG controller was synthesized for the mathematical model of the pipe in
the critical flow velocity of the open-loop system, i.e., the critical flow velocity without active
control. The closed-loop critical flow velocity was defined as the flow velocity which lost the
stability of the closed-loop system with the fixed controller by increasing the flow velocity of
the pipe. With the definition of the closed-loop critical flow velocity, the stability and the
performance (in the sense of LQG criterion) are guaranteed in the open-loop critical flow velocity.
However, the physical validity of the resulted optimal design in this method is not necessarily clear
because the energy consumption for the active control was not equalized among optimal design
candidates.
In this paper, we redefine the closed-loop critical flow velocity as the flow velocity which cannot

be stabilized with a predetermined energy quantity for active control. The feedback controller
satisfying the energy constraint can be obtained with an iterative algorithm proposed by Skelton
[13]. With the obtained controller, the optimal outer diameter distribution and the location of the
sensor and the actuator are optimized for maximizing the redefined closed-loop critical flow
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velocity. Using this criterion, we can fairly compare the closed-loop critical flow velocity between
several candidates of the optimal design since the energy consumption of all candidates are
equalized.
In general, simultaneous optimal design problem, the analytical method for obtaining the

optimal design variables (structural design variables and the feedback controller) has not been
found up to the present. We obtain the optimal design variable with a numerical optimization
technique as the case with general simultaneous optimal design. We adopt simulated annealing
(SA) [14] for obtaining the optimal design. SA method is known as a numerical optimization
method without information on gradient of the objective function. If we employ the iterative
controller design method by Skelton [13], the amount of computation for obtaining the closed-
loop critical flow velocity becomes unacceptably large. In this paper, we propose an algorithm for
obtaining the closed-loop critical flow velocity with less amount of computation.
The rest of this paper is organized as follows. In Section 2, the mathematical model of the

cantilevered pipe conveying fluid is derived and the optimal design problem is formulated. An
algorithm for obtaining the optimal design is proposed in Section 3. In Section 4, we present a
design example. The conclusion of this paper is given in Section 5.

2. Problem formulation

2.1. Mathematical model of the cantilevered pipe conveying fluid

The thruster-controlled pipe system in this paper is shown in Fig. 1. Define the horizontal and
the vertical co-ordinates as x and W ; respectively. An incompressible fluid of mass per unit length
mf flows in the pipe with a constant velocity V : At x ¼ La; an actuator is connected to the pipe by
a spring with spring constant K : A sensor target is installed at x ¼ Ls for measuring the
displacement of the pipe. The control displacement UðtÞ where t is a time constant is determined
by the feedback controller. The inner diameter of the pipe is uniformly d in 0pxpL: The pipe is
divided equally into M sections and the outer diameter of each section can be adjusted. The
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distribution of the outer diameter of the pipe is given by

DðxÞ ¼
XM

k¼1

DkðxÞ; ð1Þ

where

DkðxÞ ¼
Dk > 0 ððk � 1ÞL=MpxokL=MÞ;

0 ðotherwiseÞ:

(
ð2Þ

From Eq. (1), the distribution of moment of inertia of area is

IðxÞ ¼
p
64
ðDkðxÞ

4 � d4Þ: ð3Þ

It is assumed that the pipe is made of a material with Kelvin–Voigt-type viscoelasticity, and E� is
the coefficient of internal dissipation. Then, the equation of motion of the pipe system is
given by

LðW Þ ¼
@2

@x2
EIðxÞ

@2W

@x2
þ E�IðxÞ

@3W

@x2@t

� �

þ mf
@

@t
þ V

@

@x

� �2

W þ mbðxÞ
@2W

@t2
þ KðW � UÞdðx � LaÞ ¼ 0; ð4Þ

where E and mbðxÞ are Young’s modulus and the mass distribution of the pipe with the above
outer diameter distribution, respectively. The function dðxÞ is the Dirac’s delta function. The
boundary conditions become

x ¼ 0: W ¼
@W

@x
¼ 0;

x ¼L: EIðxÞ
@2W

@x2
þ E�IðxÞ

@3W

@x2@t
¼ 0;

EIðxÞ
@3W

@x3
þ E�IðxÞ

@4W

@x3@t
¼ 0: ð5Þ

Assume that the deflection of the pipe is approximated as follows:

W ðx; tÞ ¼
XN

m¼1

amðtÞfmðxÞ; ð6Þ

fmðxÞ ¼ cosh
amx

L
� cos

amx

L
� sm sinh

amx

L
� sin

amx

L

� �
; ð7Þ

sm ¼
sinh am � sin am

cosh am þ cos am

; ð8Þ
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where amðtÞ is an unknown time function, fmðxÞ is the normalized eigenfunction of the cantilevered
beam and am is the solution to the frequency equation, namely, 1þ cosh amcos am ¼ 0:
Substituting Eq. (6) into Eq. (4) and applying Galerkin procedure, we have the following

equation:

D.qðtÞ þ E’qðtÞ þ FqðtÞ ¼ GUðtÞ; ð9Þ

where qðtÞ ¼ ½a1ðtÞ y aNðtÞ�T: The detailed expressions of matrices D; E; F and G are given in
Appendix A. Eq. (9) is rewritten in state-space form given as

’xðtÞ ¼ AxðtÞ þ BðUðtÞ þ nsðtÞÞ;

Y ðtÞ ¼ CxðtÞ þ nmðtÞ;

(
ð10Þ

xðtÞ ¼ ½a1ðtÞ y aNðtÞ ’a1ðtÞ y ’aNðtÞ�T;

A ¼
0 I

�D�1F �D�1E

" #
; B ¼

0

�D�1G

" #
;

C ¼ ½f1ðLsÞ ? fNðLsÞ 0�;

where nsðtÞ and nmðtÞ are the system and the measurement noise which satisfy following
properties:

ENðnsðtÞÞ ¼ 0; ENðnmðtÞÞ ¼ 0;

ENðnsðtÞnsðtÞÞ ¼ qdðt � tÞ; ENðnmðtÞnmðtÞÞ ¼ dðt � tÞ;

ENðnsðtÞnmðtÞÞ ¼ 0; q > 0; 8t; t > 0; ð11Þ

where EN denotes the expectation operator.

2.2. Maximization problem of the closed-loop critical flow velocity

We synthesize a feedback controller U ¼ CðsÞY for the mathematical model of the cantilevered
pipe conveying fluid. For the noise introduced in Eq. (10), we define the energy consumption for
active control as

Eu ¼ ENðUðtÞ2Þ: ð12Þ

In this paper, we define the closed-loop critical flow velocity as the following:

Definition 1 (The closed-loop critical flow velocity Vc
cr). For the model of the pipe system given in

Eq. (10), the closed-loop critical flow velocity Vc
cr is the maximum flow velocity which can be

stabilized with a feedback controller subject to the following energy constraint:

Eupm; ð13Þ

where m > 0 is the upper bound of the energy consumption for active control predetermined by a
designer.
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With Definition 1, we formulate the simultaneous optimal design of the cantilevered pipe
conveying fluid as the following:

Simultaneous optimal design of the cantilevered pipe conveying fluid: Find the optimal outer
diameter distribution DðxÞ�; sensor and actuator location L�s and L�a and the feedback controller
CðsÞ� for maximizing Vc

cr such that the volume of the pipe is equal to that of the initial outer
diameter distribution.
For future discussions, we define the open-loop critical flow velocity Vo

cr as the critical flow
velocity of the pipe system without active control.

3. Optimal design method

3.1. Closed-loop critical flow velocity

Assume that the feedback controller CðsÞ� is obtained from the class of LQG control law. For a
candidate of the structural design variable denoted by ðDðxÞc;Lc

s ;L
c
aÞ; the closed-loop critical flow

velocity Vc
cr is obtained by a following algorithm:

Algorithm 1. Step 0: Let i ¼ 1 as the iterative number and set the upper bound of the energy
consumption m > 0 in Eq. (13). Define ðVc

crÞ
i ¼ Vo

cr as the initial estimate of the closed-loop critical
flow velocity.

Step 1: Obtain the state space model of the pipe system in Eq. (10) for ðVc
crÞ

i: Let k ¼ 1 and kmax

be the iterative number for the inner loop and the maximum number of inner loop iteration,
respectively. In the inner loop, the LQG controller satisfying the constraint in Eq. (13) is obtained.
Define the quadratic cost function J given as

J ¼ ENðxðtÞTQxðtÞ þ rkUðtÞ2Þ; ð14Þ

where the matrix QX0 is selected such that the pair ðQ1=2;AÞ is observable and rk > 0 is a scalar

weight.
Step 2: Obtain the LQG controller CðsÞk for minimizing the cost function J: The state space

realization of the LQG controller is represented as

CkðsÞ ¼
Ak

c Bc

Ck
c 0

" #
¼

A� BKk
r � KeC Ke

�Kk
r 0

" #
; ð15Þ

where Kk
r ¼ BTPk=rk and Ke ¼ SCT: Note that we use the notation

GðsÞ ¼
A B

C D

	 


for representing a transfer function GðsÞ given by GðsÞ ¼ CðsI � AÞ�1BþD: Matrices Pk and S are

positive definite solutions of following algebraic Riccati equations:

ATPk þ PkA� PkBBTPk=rk þQ ¼ 0; ð16Þ

ASþ SAT � SCTCSþ qBBT ¼ 0: ð17Þ
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Step 4: Construct the closed-loop system TkðsÞ as

TkðsÞ ¼
Ak

T Bk
T

CT
k 0

" #
; ð18Þ

where

Ak
T ¼

A BCk
c

BcC Ak
c

" #
; BT ¼

B

0

" #
;

Ck
T ¼ ½0 Ck

c �: ð19Þ

The energy consumption for active control of TkðsÞ is given by

Ek
u ¼ Ck

TX
k
TC

kT

T ; ð20Þ

where the matrix Xk
T is the positive definite solution of the following Lyapunov equation:

Ak
TX

k
T þ Xk

TA
kT

T þ qBTB
T
T ¼ 0: ð21Þ

Step 5: If jEk
u � Ek�1

u jpee ðee > 0Þ and jEk
u � mjpeu ðeu > 0Þ; let ðVc

crÞ
iþ1’ðVc

crÞ
i þ DV ðDV > 0Þ;

i’i þ 1 and go to Step 1. Else if jEk
u � Ek�1

u jpee and jEk
u � mj > eu; let

rkþ1’rk Ek
u

m

� �m

ðm > 0Þ; k’k þ 1 ð22Þ

and go to Step 2. Otherwise (the condition jEk
u � Ek�1

u jpee is not achieved even if k ¼ kmax), the

closed-loop critical flow velocity becomes ðVc
crÞ

i�1 and the algorithm is terminated.

In the inner loop of Algorithm 1, we adopt the controller design method with the energy
constraint proposed by Skelton [13]. For a design candidate of the structural design variables
(denoted by ðDðxÞc;Lc

s ;L
c
aÞ), we have to obtain the LQG controller in Eq. (15) ikmax times for

obtaining the closed-loop flow velocity Vc
cr: This fact means that we have to solve algebraic Riccati

equations (Eqs. (16) and (17)) 2ikmax times for an optimal design candidate in the numerical
manner. As mentioned earlier, the analytical solution procedure for simultaneous optimal design
problem has not been found up to the present and iterative numerical methods are generally
employed. If we check the closed-loop critical flow velocity for Nc candidates of the optimal
design (generally, the number Nc becomes large), we have to solve algebraic Riccati equation
2Ncikmax times. The amount of the computation may become unacceptably large even with the use
of the computer power which is fastly developed in this decade. In this paper, we propose a
following algorithm for obtaining the closed-loop critical flow velocity with less amount of
computation:

Algorithm 2. Step 0: Let i ¼ 1 as the iterative number and set the upper bound of the energy
consumption m > 0 in Eq. (13). Define ðVc

crÞ
i ¼ Vo

cr as the initial estimate of the closed-loop critical

flow velocity.
Step 1: Obtain the state-space model of the pipe system in Eq. (10) for ðVc

crÞ
i: For the state-

space representation, find the co-ordinate transformation matrix T such that the realization on

ARTICLE IN PRESS

K. Hiramoto, H. Doki / Journal of Sound and Vibration 274 (2004) 685–699 691



xðtÞ ¼ TzðtÞ becomes

’zðtÞ ¼ AmzðtÞ þ BmðUðtÞ þ nsðtÞÞ;

Y ðtÞ ¼ CmzðtÞ þ nmðtÞ; ð23Þ

where

Am ¼ T�1AT ¼ blockdiagðA1
m;A

2
m;y;AN

mÞ; ð24Þ

Bm ¼ T�1B ¼ ½ðB1
mÞ

T ðB2
mÞ

T ? ðBN
mÞ

T�T; ð25Þ

Cm ¼ CT ¼ ½C1
m C2

m ? CN
m �: ð26Þ

Matrices A j
m; B

j
m and C j

m ð j ¼ 1;y;NÞ are given by

A j
m ¼

�zjoj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2j

q
oj

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2j

q
oj �zjoj

2
64

3
75; Bi

m ¼
b1

j

b2
j

" #
; Ci

m ¼ ½c1j c2j �; ð27Þ

where zj and oj denote the jth modal damping coefficient and the jth natural frequency of the pipe
system respectively. Note that the state-space realization in Eq. (23) is the modal coordinate
representation of the pipe system.

Step 2: Pick up unstable Nu subsystems from the pipe system defined in Eq. (23). Namely, pick up
Nu A j

m; B
j

m and C j
m ð j ¼ 1;y;NuÞ matrices where zjp0 (i.e., those modes are not asymptotically

stable) from the modal coordinate representation of pipe system. Redefine those matrices as A j
u ; B

j
u ;

C j
u ð j ¼ 1;y;NuÞ; respectively, and construct an antistable system given by

’zuðtÞ ¼ AuzuðtÞ þ BuðUðtÞ þ nsðtÞÞ;

YuðtÞ ¼ CuzuðtÞ þ nmðtÞ; ð28Þ

where

Au ¼ blockdiagðA1
u;y;ANu

u Þ;

Bu ¼ ½B1T

u ^ BNT
u

u �T; Cu ¼ ½C1
u ? CNu

u �:

Step 3: Obtain a state feedback gain matrix UðtÞ ¼ �FuzuðtÞ satisfying

ReðllðAu � BuFuÞÞ ¼ �ReðllðAuÞÞ; l ¼ 1;y;Nu: ð29Þ

Compute an estimator gain matrix Ke ¼ SCT where the matrix S is the positive definite solution of
Eq. (17). Note that the relation between eigenvalues of two matrices Au and Au � BuFu is shown in

Fig. 2. Each pole of the closed-loop system (eigenvalues of the matrix Au � BuFu) located at the
mirror image of the corresponding open-loop pole (eigenvalues of the matrix Au) with respect to the

imaginary axis.
Step 4: Obtain the full state feedback gain matrix Kf with the gain matrix Fu and the co-ordinate

transformation matrix T: Define the closed-loop system GcðsÞ as the following:

GcðsÞ ¼
Ac Bc

CT
c 0

	 

; ð30Þ
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where

Ac ¼
A �BKf

KeC A� BKf � KeC

" #
; Bc ¼

B

0

" #
;

Cc ¼ ½0 Kf �: ð31Þ

Compute the following quantity given by

Eu ¼ CcXcC
T
c ; ð32Þ

where the matrix Xc is the positive-definite solution of the following Lyapunov equation:

AcXc þ XcA
T
c þ BcB

T
c ¼ 0: ð33Þ

Step 5: If Euom; let ðVc
crÞ

iþ1’ðVc
crÞ

i þ DV and i’i þ 1 and go to Step 1. Otherwise ðEu > mÞ; the

closed-loop critical flow velocity becomes ðVc
crÞ

i�1 and terminate the algorithm.

The obtained flow velocity Vc
cr becomes the closed-loop critical flow velocity of the pipe system

because of following reasons:

(1) The energy consumption Eu gives the energy consumption of the LQG controller employing
Fu as the optimal regulator gain.

(2) The state feedback gain Fu coincides with the optimal regulator gain obtained by taking the
limit rk-N in Eq. (14) [15]. Algorithm 1 is not converged in the case that the condition
jEk

u � mjoeu is not achieved in rk-N: Since we check the possibility of the stabilization in the
case of rk-N in Algorithm 2, Algorithm 1 is never converged if we take Vc

cr obtained in
Algorithm 2 as the closed-loop critical flow velocity.
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 denotes the eigenvalue of the

matrix Au and � denotes the corresponding eigenvalue of the matrix Au � BuFu: Each pole of the closed-loop system

(eigenvalues of the matrix Au � BuFu) located at the mirror image of the corresponding open-loop pole (eigenvalues of

the matrix Au) with respect to the imaginary axis.
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The amount of computation in Algorithm 2 is drastically reduced compared to that of Algorithm 1
because Algorithm 2 is not necessary to obtain LQG controller for all candidates of the closed-loop
critical flow velocity.

3.2. Optimal design algorithm

In this paper, the optimal structural design variables, i.e., the outer diameter distribution DðxÞ�

and the sensor and the actuator location L�s and L�a are obtained with SA method [14]. This
algorithm is an application of an interaction of atoms in annealing process of metals to
optimization. In high ‘‘temperature’’, each atom behaves randomly since the energy of each atom
is relatively high. As decreasing the ‘‘temperature’’, the behaviour of the atom is gradually
constrained by surrounding atoms. In SA, a candidate of the optimal design variable is considered
as the atom. The ‘‘temperature’’ is considered to be a probability to accept a worse solution in
each search process. The initial temperature and its cooling schedule can be specified by the
designer according to the given problem. In initial stage of the optimization, since the
‘‘temperature’’ is high (the worse candidate is accepted with high probability), the candidate of the
optimal design solution is changed randomly, i.e., the random search is performed. By reducing
the temperature, the probability to accept the worse solution becomes small. In sufficiently low
‘‘temperature’’ (low probability to accept the worse candidate), the search becomes just like a
local search procedure since worse solutions are almost rejected. By adjusting the initial
temperature and the cooling schedule according to the given optimization problem, the
approximated optimal design variable which can be regarded as true optimal solution can be
obtained. The optimal design algorithm is summarized as follows:

Algorithm 3. Simulated annealing ðSAÞ method
Step 1: Set the maximum number of iterations Nc; the initial temperature T > 0 and the cooling

rate y ð0oyo1Þ: Let the present iteration number i ¼ 0: Select a candidate of an optimal
set of design variables as ðDðxÞ;La;LsÞ: Obtain the closed-loop critical flow velocity Vc

cr with

Algorithm 2.
Step 2: If i ¼ Nc; let ðDðxÞ;La;LsÞ be the optimal set of the design variables ðDðxÞ�;L�a ;L

�
s Þ and

stop. Otherwise, select randomly another set of design variables ðDðxÞnew;Lnew
a ;Lnew

s Þ which is close to
ðDðxÞ;La;LsÞ: Obtain the closed-loop critical flow velocity ðVc

crÞ
new for ðDðxÞnew;Lnew

a ;Lnew
s Þ:

Step 3: Define DVc
cr ¼ ðVc

crÞ
new � Vc

cr: If DVc
cr > 0; update ðDðxÞ;La;LsÞ’ðDðxÞnew;Lnew

a ;Lnew
s Þ and

Vc
cr’ðVc

crÞ
new: Otherwise, update ðDðxÞ;La;LsÞ’ðDðxÞnew;Lnew

a ;Lnew
s Þ and Vc

cr’ðVc
crÞ

new with a
probability p ¼ expðDVc

cr=TÞ:
Step 4: Let T’yT and i’i þ 1 and go to Step 2.

The objective function, i.e., the closed-loop critical flow velocity may become non-differentiable
function on structural design variables since the number(s) of the unstable mode(s) of the pipe
system may change depending upon design variables. Therefore, gradient-based optimization
techniques, e.g., steepest descent method, Newton method, etc. may not work well for this optimal
design problem. On the other hand, no data on the gradient of the objective function are not
required in the process of SA optimization. It means that SA method works effectively even in the
case that the gradient optimization method cannot be applied.
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In the formulated design problem it is not guaranteed to converge to the global optimal design
even in the use of SA method, i.e. obtained optimal design is a local optimal solution. However, SA
method can avoid an initial convergence to a ‘‘bad’’ local optimal solution (Note that we may
observe such initial convergence if we simply adopt a gradient-based optimization to the formulated
problem.) since the transition to a worse solution with some probabilities is allowed in SA method.

4. Design example

As a design example, the simultaneous optimal design proposed in the previous section is
performed for the pipe system. In this design example the equation of motion in Eq. (4) is
approximated by first 10 modes of vibration, i.e., N ¼ 10 in Eq. (6) is employed for obtaining the
finite-dimensional model in Eq. (9). The physical property of the pipe system is summarized in
Table 1. The initial temperature and the cooling rate are set as T ¼ 0:5 and y ¼ 0:99; respectively.
The optimal design is obtained for three upper bounds of the energy consumption (in Eq. (13)), i.e.,
m ¼ 1; 100 and 104; respectively. Results of the optimization for each value of m are shown in Figs.
3(a) to 5(a). The optimized closed-loop critical flow velocity ðVc

crÞ
� for each upper bound of the

energy consumption m is also shown in Table 2. In each example the uniform outer diameter
distribution is used as the initial structural design parameter. Although randomly selected several
non-uniform distributions are tested for obtaining the ‘‘better’’ local optimal solution, it is found
that there are almost no effects of the initial value changing on the value of the obtained optimal
closed-loop critical flow velocity in the example. The optimized closed-loop critical flow velocity
becomes higher as the upper bound of the energy consumption m becomes larger. It is physically
reasonable since the authority of the active control becomes higher as the energy consumption
grows larger. From Fig. 3(b), the optimized closed-loop critical flow velocity Vc

cr is almost same as
the corresponding open-loop critical flow velocity Vo

cr for the small energy consumption ðm ¼ 1Þ:
The maximum of the closed-loop critical flow velocity is achieved in the point where the open-loop
critical flow velocity becomes maximum. It implies that the simultaneous optimal design and the
structural optimal design (without active control) have the same meaning in the case that the
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Table 1

Physical properties of the pipe (initially, V ¼ 0 (m/s))

Parameter Value

Inner diameter d (m) 4:38� 10�3

Outer diameter D0 (m) 12:23� 10�3

Length L (m) 0.602

Mass per unit length of pipe mb (kg/m) 0.122

Mass per unit length of fluid mf (kg/m) 1:52� 10�2

Young’s modulus E (Pa) 6:06� 106

Spring constant K (N/m) 1:50� 102

Natural frequency (1st mode) f1 (Hz) 0.5

Natural frequency (2nd mode) f2 (Hz) 2.25

Logarithmic decrement (1st mode) d1 0.15

Logarithmic decrement (2nd mode) d2 0.31
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Fig. 3. Result of the optimal design ðm ¼ 1Þ: In (a), non-dimensional quantities x ¼ x=L; xs ¼ Ls=L and xa ¼ La=L are

used for representing horizontal coordinate and locations of the sensor and the actuator. Symbols D0; Du; Dl ; x
0
s and x0a

are the initial outer diameter distribution, maximum and minimum value of the outer diameter of each divided section,

the initial location of the sensor and the actuator, respectively; (a) shape of the pipe, (b) optimization history for Vc
cr:
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Fig. 4. Result of the optimal design ðm ¼ 100Þ; (a) shape of the pipe, (b) optimization history for Vc
cr:
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Fig. 5. Result of the optimal design ðm ¼ 104Þ; (a) shape of the pipe, (b) optimization history for Vc
cr:

Table 2

Optimized value of the closed-loop critical flow velocity Vc
cr

m ðVc
crÞ
� (m/s)

1 15.07

100 15.67

104 22.76
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authority of the active control is small. In other words, the structural design variables are optimized
such that the open-loop critical flow velocity Vo

cr is maximized for the small energy consumption.
The validity of the above speculation is reinforced from the result that the optimization history for
Vc

cr is almost same as the one for Vo
cr in Fig. 3(b). On the other hand, from Figs. 4(b) and 5(b), the

correlation between the optimized closed-loop critical flow velocity Vc
cr and the open-loop critical

flow velocity Vo
cr becomes smaller as the upper bound of the energy consumption m becomes larger.

Furthermore, the maximum point of the closed-loop critical flow velocity Vc
cr is not achieved in the

point where the maximum of the open-loop critical flow velocity Vo
cr is achieved in m ¼ 100 and 104:

These results point out that the optimal design is different between the case of open-loop setting
(without active control) and the one assuming the introduction of active control for the pipe system.
This result strongly emphasizes us the necessity of the simultaneous optimal design approach for the
active control system design of the cantilevered pipe conveying fluid.

5. Conclusion

In this paper, we have considered the simultaneous optimal design of the cantilevered pipe
conveying fluid. The results are summarized as follows:

(1) The simultaneous optimal design problem is formulated as the maximization problem of the
closed-loop critical flow velocity with the constraint on the energy consumption for active
control. We can fairly compare the performance of optimal design candidates under this
problem formulation.

(2) The algorithm is proposed for obtaining the closed-loop critical flow velocity with less amount
of computation.

(3) The simultaneous optimal design method with simulated annealing is proposed.

The future research projects are as follows:

(1) Understanding the obtained result in physical sense.
(2) Experimental verification of the result.
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Appendix A. The detailed expressions of matrices D; E; F and G

The detailed expressions of matrices D; E; F and G in Eq. (9) are given as follows:

D ¼ mf Iþ
Z L

0

mbðxÞ

f1ðxÞ
2 ? f1ðxÞfNðxÞ

^ & ^

f1ðxÞfNðxÞ ? fNðxÞ
2

2
64

3
75 dx; ðA:1Þ
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E ¼E�
Z L

0

@2IðxÞ
@x2

f1ðxÞ
@2f1ðxÞ
@x2

? f1ðxÞ
@2fNðxÞ
@x2

^ & ^

fNðxÞ
@2f1ðxÞ
@x2

? fNðxÞ
@2fNðxÞ
@x2

2
666664

3
777775 dx

þ
E�

L4

Z L

0

IðxÞ

a41f1ðxÞ
2 ? a4Nf1ðxÞfNðxÞ

^ & ^

a41f1ðxÞfNðxÞ ? a4NfNðxÞ
4

2
64

3
75 dx

þ 2mf V

Z L

0

f1ðxÞ
@f1ðxÞ
@x

? f1ðxÞ
@fNðxÞ
@x

^ & ^

f1ðxÞ
@fNðxÞ
@x

? fNðxÞ
@fNðxÞ
@x

2
66664

3
77775 dx; ðA:2Þ

F ¼E

Z L

0

@2IðxÞ
@x2

f1ðxÞ
@2f1ðxÞ
@x2

? f1ðxÞ
@2fNðxÞ
@x2

^ & ^

f1ðxÞ
@2fNðxÞ
@x2

? fNðxÞ
@2fNðxÞ
@x2

2
666664

3
777775 dx

þ
E

L4

Z L

0

IðxÞ

a41f1ðxÞ
2 ? a4Nf1ðxÞfNðxÞ

^ & ^

a41f1ðxÞfNðxÞ ? a4NfNðxÞ
2

2
64

3
75 dx

þ V2

Z L

0

f1ðxÞ
@2f1ðxÞ
@x2

? f1ðxÞ
@2fNðxÞ
@x2

^ ? ^

fNðxÞ
@f1ðxÞ
@x

? fNðxÞ
@fNðxÞ
@x

2
666664

3
777775 dx

þ K

f1ðLaÞ
2 ? f1ðLaÞfNðLaÞ

^ & ^

f1ðLaÞfNðLaÞ ? fNðLaÞ
2

2
64

3
75 dx; ðA:3Þ

G ¼ ½f1ðLaÞ ? fNðLaÞ�T: ðA:4Þ
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